Preparation, Properties, and Crystal Structure of $\mathbf{Z r}_{5} \mathbf{Z n}_{39}$, a Vacancy Variant of the $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$-Type, and Structure Refinement of $\mathbf{Z r Z n}_{22}$

Xue-an Chen ${ }^{1}$ and Wolfgang Jeitschko ${ }^{2}$
Anorganisch-Chemisches Institut, Universität Münster, Wilhelm-Klemm-Str. 8, D-48149 Münster, Germany

Received June 5, 1995; accepted August 17, 1995

Well-developed crystals of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and ZrZn_{22} were obtained from binary alloys with an excess of zinc by dissolving the matrices in hydrochloric acid, which attacks the binary compounds at a slower rate. Both compounds are diamagnetic with susceptibility values of $\boldsymbol{X}=-\mathbf{2 5}(\pm 15) \times 10^{-9} \mathrm{~m}^{3} / \mathrm{mol}$ for $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and $\chi=-12(\pm 2) \times 10^{-9} \mathrm{~m}^{3} / \mathrm{mol}^{2}$ for ZrZn_{22}. Electrical conductivity measurements confirm the expected metallic conductivity of $\mathrm{Zr}_{5} \mathrm{Zn}_{3}$. The crystal structure of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ was determined from single-crystal X-ray diffractometer data: $C 2 / m, a=1785.5(7) \mathrm{pm}, b=859.6(2) \mathrm{pm}, c=1254.6(4) \mathrm{pm}$, $\beta=134.40(2)^{\circ}, Z=2, R=0.035$ for 1744 structure factors and 119 variable parameters. The previously reported structure of ZrZn_{22} is confirmed: $F d \overline{3} m, a=1410.5(1) \mathrm{pm}, Z=8, R=$ 0.026 for $248 F$ values and 18 variables. Both compounds show significant deviations from the full occupancy for one zinc site, resulting in the exact compositions $\mathrm{Zr}_{5} \mathrm{Zn}_{38.921(7)}$ and $\mathrm{ZrZn}_{21.798(7)}$. Both structures contain relatively large voids, which are suited for the accommodation of interstitial atoms. It is suggested that these voids are filled with nonbonding electrons of the zinc atoms. This is supported by the existence of the tetragonal $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$ type structure, which may be regarded as a translationengleiche "filled-up" version of $\mathbf{Z r}_{5} \mathbf{Z n}_{3}$. © 1996 Academic Press, Inc.

INTRODUCTION

The phase diagram of the binary system zirconium-zinc has been investigated by Chiotti and Kilp (1), who found six binary phases. ZrZn has a CsCl structure (2); the wellknown ferromagnetic compound ZrZn_{2} is isotypic with $\mathrm{MgCu}_{2}(3,4) ; \mathrm{ZrZn}_{3}$ is reported to be dimorphic with a phase transition at $910^{\circ} \mathrm{C}$ (1). Both structures are as yet undetermined. The phase designated as " ZrZn_{6} " (1) is identical to the compound $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ of the present paper. And finally " ZrZn_{14} " (1) has been found from single-crys-

[^0]tal Weissenberg data to crystallize with a $\mathrm{Mg}_{3} \mathrm{Cr}_{2} \mathrm{Al}_{18}$ type structure with the ideal composition ZrZn_{22} (5). This structure is confirmed by the present work.

SAMPLE PREPARATION AND LATTICE CONSTANTS

Both $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and ZrZn_{22} are formed by peritectic reactions (1). We therefore prepared single cyrstals of these compounds from samples with higher zinc contents. Starting materials were powders of zirconium and zinc, and zinc granules, all with nominal purities greater than 99.9%. For the preparation of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$, microcrystalline samples with the composition $\mathrm{Zr}: \mathrm{Zn}=1: 3$ were first prepared by reaction of cold-pressed pellets at $620^{\circ} \mathrm{C}$ for one week with one intermittent grinding. The resulting products were mixed with granules of zinc in the atomic ratio $\mathrm{Zr}: \mathrm{Zn}=$ 3.6:96.4 and placed in alumina containers, which were sealed in silica tubes under argon. The samples were heated gradually to $910^{\circ} \mathrm{C}$, where they were kept for six days, then cooled at a rate of $5^{\circ} \mathrm{C} / \mathrm{h}$ to $570^{\circ} \mathrm{C}$. They were annealed at that temperature for one day and quenched in water. The zinc-rich matrix was dissolved in diluted hydrochloric acid. This acid also attacks the crystals of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$, albeit at a slower rate. The crystals of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ had the shape of prisms with dimensions of up to $0.2 \times 0.2 \times 2.0 \mathrm{~mm}^{3}$.

The crystals of ZrZn_{22} were prepared in the same way, except that the atomic starting ratio was $\mathrm{Zr}: \mathrm{Zn}=3.3: 96.7$ and the slow cooling was extended to $540^{\circ} \mathrm{C}$. After dissolving the zinc-rich matrix in hydrochloric acid two kinds of ZrZn_{22} crystals with diameters of up to 0.2 mm were observed. One kind had octahedral habit and these crystals proved to be real cubic single crystals. The other crystals had the form of triangular platelets. Their reciprocal lat-tice-recorded on the four-circle diffractometermimicked hexagonal symmetry $6 / \mathrm{mmm}$. The pseudohexagonal lattice constants (h) of these crystals may be obtained from the cubic lattice constants (c) by the relations $a_{h}=a_{c} / \sqrt{2}=997.4 \mathrm{pm}$ and $c_{h}=a_{c} \sqrt{3}=2443.1 \mathrm{pm}$. These relationships suggest twinning with the cubic [111]

TABLE 1
Some Data and Results of the Structure Determinations of $\mathbf{Z r}_{5} \mathbf{Z n}_{39-x}$ and $\mathbf{Z r Z n}_{22-x}{ }^{a}$

Structure type	$\mathrm{Zr}_{5} \mathrm{Zn}_{39}$	$\mathrm{Mg}_{3} \mathrm{Cr}_{2} \mathrm{Al}_{18}$
Composition	$\mathrm{Zr}_{5} \mathrm{Zn}_{38.921(7)}$	$\mathrm{ZrZn}_{21.798(7)}$
Crystal dimensions, $\mu \mathrm{m}^{3}$	$30 \times 30 \times 80$	$50 \times 50 \times 50$
Space group	$\mathrm{C} 2 / \mathrm{m}(\mathrm{No.12)}$	$\mathrm{Fd} \overline{3 \mathrm{~m}}(\mathrm{No} 227)$.
Lattice constants from powder data		
$\quad a(\mathrm{pm})$	$1785.5(7)$	$1410.5(1)$
$b(\mathrm{pm})$	$859.6(2)$	-
$c(\mathrm{pm})$	$1254.6(4)$	-
β	$134.40(2)^{\circ}$	-
$V\left(\mathrm{~nm}^{3}\right)$	1.3758	2.8062
Lattice constants from single crystal data		
$\quad a(\mathrm{pm})$	$[1785.6(2)]$	$[1409.1(2)]$
$b(\mathrm{pm})$	$[860.8(1)]$	
$c(\mathrm{pm})$	$[1253.0(2)]$	$[2.7979]$
β	$\left[134.47(1)^{\circ}\right]$	$Z=8$
$\left.V(\mathrm{~nm})^{3}\right)$	$[1.3744]$	1516.4
Formula units/cell	$Z=2$	$\rho=7.18$
Formula mass	3000.8	$2 \theta=85^{\circ}$
Calculated density $\left(\mathrm{g} / \mathrm{cm}{ }^{3}\right)$	$\rho=7.24$	$0-26,0-26, \pm 26$
$\theta / 2 \theta$ scans up to	$2 \theta=75^{\circ}$	5292
Range in $h k l$	$\pm 30,0-14, \pm 21$	566
Total number of reflections	7692	$R_{i}=0.050$
Unique reflections	3924	$248(n=1)$
Inner residual	$R_{i}=0.034$	1.11
Reflections with $I>n \sigma(I)$	$1744(n=2)$	18
Highest/lowest transmission	1.09	3.0×10^{-7}
Number of variables	119	$R=0.026$
Secondary extinction coefficient	6.8×10^{-8}	$R_{\mathrm{w}}=0.016$
Conventional residual	$R=0.035$	
Weighted residual	$R_{\mathrm{w}}=0.035$	

${ }^{a}$ Standard deviations in the positions of the least significant digits are given in parentheses throughout the paper.
axis as the common twin axis, where the two domain orientations can be transformed into each other by a rotation of 60° around the pseudohexagonal twin axis.

The crystals of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and ZrZn_{22} are gray with metallic luster. They are stable in air for long periods of time but are slowly attacked by diluted hydrochloric acid. Energydispersive X-ray fluorescence analyses in a scanning electron microscope did not reveal any impurity elements heavier than sodium.

The lattice constants of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and ZrZn_{22} were obtained from powder samples, which were prepared by annealing cold-pressed pellets of the elemental components with the ideal compositions at $360^{\circ} \mathrm{C}$ for two weeks. The Guinier powder patterns were standardized with α-quartz ($a=491.30 \mathrm{pm}, c=540.46 \mathrm{pm}$), and the lattice constants (Table 1) were obtained by least-squares fits of these data.

PHYSICAL PROPERTIES

The electrical conductivity of a single crystal of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ was measured with a four-probe technique in the temperature range from 2 K to room temperature. A crystal of
about $0.2 \times 0.2 \times 1.0 \mathrm{~mm}^{3}$ was contacted with four copper filaments using a well-conducting silver epoxy cement. A constant alternating current was maintained between two contacts and the voltage difference was measured by the other two contacts. Because of the uncertainties in estimating the size of the contacted areas, the absolute values of the electrical resistivities are estimated to be accurate only within a factor of three, however, the relative values at different temperatures are much more reliable. The resistivity increases with temperature (Fig. 1), indicating the expected metallic behavior. The room-temperature resistivity of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ is approximately $\rho=13 \mu \Omega \mathrm{~cm}$, which is comparable to the literature values (6) of zinc ($\rho=5.9$ $\mu \Omega \mathrm{cm}$) and zirconium ($\rho=42 \mu \Omega \mathrm{~cm}$).

Selected single crystals of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and ZrZn_{22} were investigated with a SQUID magnetometer in the temperature range between 2 and 300 K at magnetic flux densities of up to 5.5 T . The magnetic susceptibility values of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ show relatively large scatter, because only five small crystals were used for this measurement. Both compounds show nearly temperature-independent diamagnetism at temperatures above 100 K (Fig. 2). The upturns at low

FIG. 1. Electrical resistivity of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ as a function of temperature.
temperatures and the field-dependence of the $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ sample may be ascribed to minor amounts of para- and ferromagnetic impurities, respectively. $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ was shown to be a metallic conductor and this is also expeceted for ZrZn_{22}. Thus, temperature-independent Pauli paramagnetism can be assumed for both compounds. The negative values of the susceptibilities of $\chi=-25(\pm 15) \times 10^{-9} \mathrm{~m}^{3} /$ formula unit for $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and $\chi=-12(\pm 2) \times 10^{-9} \mathrm{~m}^{3} /$ formula unit for ZrZn_{22} indicate that the Pauli paramagnetism is overcompensated by the core diamagnetism of the compounds.

STRUCTURE DETERMINATIONS

Single crystals of both compounds were examined in Buerger precession cameras to establish their symmetry. The diffraction patterns of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ showed a C-centered monoclinic cell. The only systematic extinctions (reflections $h k l$ were observed only with $h+k=2 n$) were compatible with the space groups $C 2, C m$, and $C 2 / m$, of which the centrosymmetric group $C 2 / m$ was found to be correct during the structure refinement. The precession photographs of ZrZn_{22} confirmed the previously reported cubic $F d \overline{3} m$ symmetry (5).

The X-ray diffraction intensity data for both compounds were recorded on an automated four-circle diffractometer with graphite-monochromated $\mathrm{Mo} K \alpha$ radiation and a scintillation counter with pulse-height discrimination. The background was determined on both sides of each $\theta / 2 \theta$ scan. Empirical absorption corrections were made on the basis of psi-scan data. The crystallographic data and some results are summarized in Table 1.

The structure of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ was solved by direct methods with the SHELXS-86 (7) program system. For the refinement of the ZrZn_{22} structure the positional parameters
were taken from the previous structure determination (5). A full-matrix least-squares program of the SDP package (8) was used for both structure refinements with atomic scattering factors (9), corrected for anomalous dispersion (10). The weighting schemes included a term, which accounted for the counting statistics and both data sets were corrected for isotropic secondary extinction by leastsquares fits of one parameter. To check for deviations from the ideal compositions all occupancy parameters were allowed to vary along with the thermal parameters, while the scale factors were held constant. The resulting occupancies varied between the values of 0.983(5) for Zn 10 and 1.017(3) for Zn 6 in $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and between 1.001(4) for Zr and 1.017(4) for Zn 4 in ZrZn_{22}. The only exceptions were the Zn 14 position of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and the Zn 3 position of ZrZn_{22}, which showed significant deviations from the full occupancies with the occupancy values of 0.911 (7) and $0.899(4)$, respectively. Therefore, in the final least-squares cycles all positions were assumed to be fully occupied with the exception of these two positions. Both sites were finally

FIG. 2. Magnetic susceptibilities of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and ZrZn_{22} recorded with magnetic flux densities of 3 and 5.5 T . The upturns at low temperatures are ascribed to paramagnetic impurities. The lines connecting the data points are solely guides for the eye.

TABLE 2
Atomic Parameters of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and $\mathrm{ZrZn}_{22}{ }^{a}$

Atom		x	y	z	$B_{\text {eq }}$
$\mathbf{Z r}_{5} \mathbf{Z n}_{38.921(7)}(C 2 / m)$					
Zr1	$4 i$	0.22798(6)	0	0.65234(9)	0.40(2)
Zr2	$4 i$	0.42741 (6)	0	0.20891(9)	0.45(2)
Zr3	$2 a$	0	0	0	0.75(3)
Zn1	$8 j$	0.07213(6)	0.3400(2)	0.19903(9)	0.97(2)
Zn2	$8 j$	$0.07543(6)$	0.2390(1)	0.44328(8)	0.81(2)
Zn3	$8 j$	$0.12262(6)$	0.3433(2)	0.04946 (8)	0.98(2)
Zn4	$8 j$	0.21617(6)	0.1552(1)	0.27116(8)	0.82(2)
Zn5	$8 j$	$0.37215(6)$	0.2659(1)	0.29648 (8)	0.86(2)
Zn6	$8 j$	0.44272(6)	0.3464(1)	0.16227(8)	0.79(2)
Zn7	$4 i$	$0.12123(8)$	0	0.3402(1)	0.76(3)
Zn8	$4 i$	0.21557(9)	0	0.0925(1)	0.84(3)
Zn9	$4 i$	0.34467(8)	0	0.5595(1)	0.68(3)
Zn10	$4 i$	0.40460(9)	0	0.4211(1)	1.03(3)
Zn11	$4 i$	0.78041(8)	0	0.1229(1)	0.73(3)
Zn12	$4 f$	1/4	1/4	1/2	0.74(2)
Zn13	$4 e$	1/4	1/4	0	0.81(3)
Zn14(92.1(7)\% Zn)	$2 c$	0	0	1/2	1.18(5)
$\mathbf{Z r Z n} 21.798(\mathbf{7})(\mathbf{F d} \mathbf{3} \mathbf{m})$					
Zr	$8 a$	1/8	1/8	1/8	0.336(5)
Zn1	96 g	0.06174(3)	x	0.31920(4)	1.244(6)
Zn2	$48 f$	0.48669(5)	1/8	1/8	1.011(8)
Zn3(89.9(4)\% Zn)	$16 d$	1/2	1/2	1/2	0.874(6)
Zn4	$16 c$	0	0	0	1.361(6)

Abstract

${ }^{a}$ The last column contains the equivalent isotropic B values in units of $10^{-2} \mathrm{~nm}^{2}$. The Zn 14 position of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and the Zn 3 position of ZrZn_{22} were found to be partially occupied. Both sites were finally refined to occupancies of 92.1(7) and 89.9(4)\%, respectively. The atom labels $\mathrm{Zr}, \mathrm{Zn} 1-\mathrm{Zn} 4$ of the presently reported standard setting of ZrZn_{22} (with the origin at the center of symmetry), correspond to the labels Zr_{b}, $\mathrm{Zn}_{g}, \mathrm{Zn}_{f}, \mathrm{Zn}_{c}$, and Zn_{d} of the earlier work (5); note that the sites $16 c$ and $16 d$ are interchanged.

refined to occupancies of $92.1(7)$ and $89.9(4) \%$, respectively. Thus the exact compositions of the crystals used for the structure determinations are $\mathrm{Zr}_{5} \mathrm{Zn}_{38.921(7)}$ and $\mathrm{ZrZn}_{21.798(7)}$. Final difference Fourier syntheses showed the highest electron densities of 2.9 and $0.4 \mathrm{e} / \AA^{3}$ for $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and ZrZn_{22}. These values are rather small and furthermore they were too close to zinc positions to be suitable for the accommodation of any additional atoms. The conventional residuals (on F values) are listed in Table 1. The positional parameters (Table 2) are in the form standardized by the program STRUCTURE TIDY (11). Tables with the anisotropic thermal parameters and the structure factors are available from the authors.

DISCUSSION

Before we start to discuss the new structure type of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ we will briefly comment on the structure refinement of ZrZn_{22}. This compound was found to be isotypic with $\mathrm{Mg}_{3} \mathrm{Cr}_{2} \mathrm{Al}_{18}(5,12)$ by Samson, who described this structure in one of several papers on intermetallic com-
pounds with very large cells (13-16). Our present structure refinement fully confirms the earlier structure determination from Weissenberg data, which had resulted in a residual of 12%. The major remarkable difference lies in the occupany of the $16 c(\mathrm{Zn} 3)$ position, which earlier was assumed to be fully occupied, while our diffractometer data resulted in an occupany of $89.9(4) \%$, assuming its occupany solely by zinc atoms. This assumption is justified, since that site has the small coordination number 12 and it has six zinc neighbors at the distance of 250.1 pm , which is much shorter than the shortest $\mathrm{Zr}-\mathrm{Zn}$ distances of 290.8 pm in $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and 301.6 pm in ZrZn_{22}.

In the earlier work (5) the possibility was discussed that the site Zn_{d} of ZrZn_{22} with the coordination number 14 (which corresponds to the Zn 4 site of the presently used standardized setting) might have a mixed occupancy of zinc and zirconium. Our refinement of this occupation factor resulted in a value of $101.7(4) \%$, assuming an occupany solely by zinc atoms. This value is only four standard deviations off the ideal occupancy and there is no need to refine this position with a mixed occupany. Samson had consid-

FIG. 3. Crystal structure of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$. The whole structure is shown in a projection along a direction perpendicular to the $a b$ plane in the upper right-hand corner. Two kind of atomic layers can be discerned. The layers \mathbf{A} are situated on the mirror plane of the $C 2 / m$ cell. The layers \mathbf{B} are puckered. A superposition of these two layers (at $y=0$ and $y \sim 1 / 4$) projected along the b axis is shown below, and both layers are shown separately in the left-hand part of the figure, where the origin of the cell and the atom designations are indicated by crosses and numbers, respectively. Some positions of the voids V1 and V2 (at $y=0$) as well as V3 and V4 (at $y \sim 1 / 4$) are also shown.
ered a mixed occupany for that site, because the composition of his single-phase material was found by two laboratories to correspond to $\mathrm{ZrZn}_{20.4}$ and $\mathrm{ZrZn}_{21.8}$, respectively. The latter is very close to the composition $\mathrm{ZrZn}_{21.798(7)}$ found in the present refinement, assuming that the Zn 3 position is only (partially) occupied by zinc atoms.

The structures of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and ZrZn_{22} with 88 and 184 atoms in their respective cells are not easy to visualize. In Figs. 3 and 4 we have chosen a description emphasizing atomic layers. One has to keep in mind, however, that the chemical bonding within and between the layers is of the same character. There are no preferred cleavage planes. The structure of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ may be regarded as being built up by the layers \mathbf{A} and \mathbf{B} (Fig. 3). The layers \mathbf{A} are situated on the mirror plane of this monoclinic ($C 2 / m$) structure and therefore they are completely flat. In contrast, the layers \mathbf{B} are puckered. They are densely populated by zinc atoms, whereas the layers \mathbf{A} are less densely populated by both the zirconium and the zinc atoms. This building principle (sequences of densely and less densely populated layers) was also recognized in the structures of $\mathrm{Ti}_{3} \mathrm{Zn}_{22}$ and TiZn_{16} (17), but the layers themselves are always different. Four layers, $\mathbf{A B A}^{\prime} \mathbf{B}^{\prime}$, are needed to complete one translation period along the twofold axis of the $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ structure. The layers \mathbf{A} and \mathbf{A}^{\prime} as well as \mathbf{B} and \mathbf{B}^{\prime} are identical,
however, because of the C centering, they are shifted relative to each other by half a translation period of the a direction, when viewed along the b direction.

The structure of ZrZn_{22} can also be viewed as a layer structure. The layers extend perpendicular to the face diagonals of the cubic cell (Fig. 4). The layers \mathbf{A} and \mathbf{A}^{\prime} are perfectly planar, because they correspond to mirror planes, whereas the other layers are slightly (almost invisibly) puckered. None of the layers are densely populated, and only the layers \mathbf{A} (and \mathbf{A}^{\prime}) contain zirconium atoms.

In both structures all atoms have high coordination numbers (Table 3, Fig. 5). In ZrZn_{22} the zirconium atoms have the coordination number $(\mathrm{CN}) 16$ with the point symmetry $\overline{4} 3 \mathrm{~m}$. Thus, this is a perfect Frank-Kasper polyhedron (18, 19). The average $\mathrm{Zr}-\mathrm{Zn}$ distance of 302.5 pm in this polyhedron is similar to the average $\mathrm{Zr} 1-\mathrm{Zn}$ distance of 300.2 pm of the Zrl atom in $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$, which also has CN 16 , albeit with a much lower symmetry. The Zr 2 and Zr 3 atoms of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ have CN 17 and CN 20. Their average $\mathrm{Zr}-\mathrm{Zn}$ distances of 305.6 pm and 327.0 pm reflect the higher CNs.

There are 14 different zinc sites in the structure of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ with CNs varying between 11 (Zn 6 and Zn 10) and $14(\mathrm{Zn} 8)$. Each zinc atom has two or three zirconium neighbors. The average $\mathrm{Zn}-\mathrm{Zn}$ distances vary between 267.7 pm for Zn 6 (with CN 11) and 287.0 pm for Zn 8 (with

FIG. 4. Crystal structure of ZrZn_{22}. Atoms may be visualized as situated on the planes $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{B}^{\prime}, \mathbf{A}^{\prime}$. The layers extend perpendicular to the twofold axis, which are parallel to the $\langle 110\rangle$ directions of the cubic cell. These layers are shown separately (at a slightly reduced scale) on the left side and superimposed at the lower right-hand corner of the figure. Some positions of the large unoccupied interstitial sites V1-V3 are indicated. Single-digit numbers and crosses correspond to the atom designations and the origin positions of the cell.

CN 14). The only exception is the coordination polyhedron of the Zn 14 atom, which has two zinc neighbors at the rather large distance of 343.5 pm . With these two neighbors the average $\mathrm{Zn} 14-\mathrm{Zn}$ distance is 291.5 pm ; without them the CN decreases to 10 with an average $\mathrm{Zn} 14-\mathrm{Zn}$ distance 278.4 pm . This zinc position is also exceptional because it has an occupancy of only $92.1(7) \%$. In ZrZn_{22} there are only four zinc positions with coordination numbers of 12 $(\mathrm{Zn} 1-\mathrm{Zn} 3)$ and $14(\mathrm{Zn} 4)$. The Zn 1 and Zn 4 atoms have one and two zirconium neighbors, the others have none.

In both structures there are rather short $\mathrm{Zn}-\mathrm{Zn}$ distances of $246.7 \mathrm{pm}(\mathrm{Zn} 10-\mathrm{Zn} 10)$, $247.4 \mathrm{pm}(\mathrm{Zn} 11-\mathrm{Zn} 13), 250.3$ $\mathrm{pm}(\mathrm{Zn} 9-\mathrm{Zn} 12)$ in $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$, and $250.1 \mathrm{pm}(\mathrm{Zn} 2-\mathrm{Zn} 3)$ in ZrZn_{22}. Similar short $\mathrm{Zn}-\mathrm{Zn}$ distances were observed in $\mathrm{Ti}_{3} \mathrm{Zn}_{22}$ (17) with 244.1(2) pm and NbZn_{2} (20) with 245 pm .

In our discussion of the compounds $\mathrm{Ti}_{3} \mathrm{Zn}_{22}$ and TiZn_{16} we have pointed out that these structures contain relatively large voids, which are big enough to accommodate additional small ("interstitial") atoms like carbon, nitrogen, or oxygen (17). Such voids are also present in the structures

TABLE 3
Interatomic Distances in $\mathbf{Z r}_{5} \mathbf{Z n}_{39}$ and $\mathbf{Z r Z n}_{22}{ }^{a}$

$\mathrm{Zr}_{5} \mathbf{Z} \mathbf{n}_{39}$											
Zr1:	2 Zn 2	292.0	Zn2:	1 Zr 1	292.0	Zn5:	1 Zr 2	298.7	Zn9:	1 Zr 2	290.8
	1 Zn 7	292.0		1 Zr 2	312.9		1 Zr 1	304.4		1 Zr 1	301.5
	1Zn11	292.6		1Zn6	262.6		1 Zn 11	254.6		2 Zn 12	250.3
	2Zn1	296.5		1 Zn 12	267.0		1 Zn 10	259.5		1 Zn 10	260.1
	2Zn3	299.4		1 Zn 9	267.2		1 Zn 2	268.6		2 Zn 1	264.1
	1 Zn 9	301.5		1 Zn 10	268.4		1 Zn 13	269.4		2 Zn 2	267.2
	2Zn5	304.4		1 Zn 5	268.6		1 Zn 2	269.5		1 Zn 7	285.1
	1 Zn 14	305.6		1 Zn 5	269.5		1 Zn 4	274.3		2Zn4	291.9
	2Zn4	305.9		1 Zn 14	280.8		1 Zn 14	276.1	Zn10:	1 Zr 2	296.1
	2Zn12	307.9		1 Zn 7	283.6		1Zn6	280.5		1 Zr 2	332.6
Zr2:	1 Zn 9	290.8		1 Zn 4	297.5		1 Zn 8	309.5		1 Zn 10	246.7
	1Zn8	295.1		1 Zn 1	314.6		1 Zn 3	325.2		2 Zn 5	259.5
	1 Zn 10	296.1	Zn3:	1 Zr 1	299.4	Zn6:	1 Zr 2	308.3		1 Zn 9	260.1
	2Zn5	298.7		1 Zr 2	301.1		1Zr3	313.8		2Zn2	268.4
	2 Zn 1	300.5		1 Zr 3	346.2		1 Zn 1	257.4		2 Zn 4	279.0
	2Zn3	301.1		1 Zn 4	257.6		1 Zn 3	259.6		1 Zn 8	298.6
	1 Zn 11	308.0		1 Zn 1	257.7		1 Zn 13	262.1	Zn11:	1 Zr 1	292.6
	2Zn6	308.3		1 Zn 1	258.9		1 Zn 2	262.6		1 Zr 2	308.0
	2 Zn 2	312.9		1Zn6	259.6		1 Zn 7	263.3		2Zn13	247.4
	2Zn13	314.7		1 Zn 11	264.0		1Zn6	264.2		2 Zn 5	254.6
	1 Zn 10	332.6		1 Zn 3	269.5		1 Zn 8	270.3		2 Zn 3	264.0
Zr3:	4Zn6	313.8		1 Zn 13	285.9		1 Zn 5	280.5		1 Zn 8	275.3
	4Zn4	314.3		1 Zn 8	324.0		1 Zn 11	289.6		2Zn6	289.6
	2Zn8	314.8		1 Zn 5	325.2	Zn7:	1 Zr 1	292.0		1Zn14	343.5
	2 Zn 7	315.8	Zn4:	1 Zr 1	305.9		1 Zr 3	315.8	Zn12:	2 Zr 1	307.9
	4 Zn 1	345.5		1Zr3	314.3		2Zn6	263.3		2Zn9	250.3
	4 Zn 3	346.2		1 Zn 3	257.6		2 Zn 4	273.1		2 Zn 4	261.6
Zn1:	1 Zr 1	296.5		1 Zn 1	258.8		2 Zn 12	273.4		2 Zn 2	267.0
	1 Zr 2	300.5		1 Zn 8	260.3		2Zn2	283.6		2 Zn 7	273.4
	1Zr3	345.5		1 Zn 12	261.6		1 Zn 9	285.1		2Zn1	285.7
	1Zn6	257.4		1 Zn 4	266.9		2 Zn 1	320.6	Zn13:	2 Zr 2	314.7
	1Zn3	257.7		1 Zn 7	273.1	Zn8:	1 Zr 2	295.1		2Zn11	247.4
	1Zn4	258.8		1 Zn 5	274.3		1 Zr 3	314.8		2Zn6	262.1
	1Zn3	258.9		1 Zn 10	279.0		2 Zn 4	260.3		2Zn5	269.4
	1Zn9	264.1		1 Zn 9	291.9		2Zn6	270.3		2 Zn 8	270.9
	1 Zn 1	275.0		1 Zn 2	297.5		2 Zn 13	270.9		2 Zn 3	285.9
	1Zn12	285.7					1 Zn 11	275.3	Zn14:	2 Zr 1	305.6
	1 Zn 2	314.6					1 Zn 10	298.6		4 Zn 5	276.1
	1 Zn 7	320.6					2 Zn 5	309.5		4 Zn 2	280.8
							2Zn3	324.0		2Zn11	343.5
ZrZn 22											
$\mathrm{Zr}:$	$12 \mathrm{Zn} 1$	301.6	Zn1:	1 Zr	301.6	Zn2:	2Zn3	250.1	Zn3:	6 Zn 2	250.1
	4 Zn 4	305.4		1 Zn 1	252.4		2 Zn 1	267.8		6 Zn 1	283.2
				2 Zn 1	261.2		4 Zn 2	275.9	Zn4:	2 Zr	305.4
				1 Zn 2	267.8		4 Zn 1	283.3		12 Zn 1	296.0
				1 Zn 3	283.2						
				2 Zn 2	283.3						
				2 Zn 1	294.5						
				2 Zn 4	296.0						

[^1]

FIG. 5. Coordination polyhedra in the structures of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and ZrZn_{22}. The numbers correspond to the atom designations. The site symmetries of the central atoms are also indicated.
of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and ZrZn_{22}. In Figs. 3 and 4 we have marked these voids with the labels V1-V4 and V1-V3, respectively, and in Table 4 we list their positions and distances to the nearest neighbors. Our difference Fourier analyses clearly showed that the positions of these voids are unoccupied in $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and ZrZn_{22}, however, they could be occupied in compounds of related compositions.

This is indeed the case for the structure of $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$ (21), which is closely related to that of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$. Both structures consist of simlar atomic layers $\mathbf{A B} \mathbf{A}^{\prime} \mathbf{B}^{\prime}$, as was discussed above for $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ (Fig. 3). In Fig. 6 we show the layers \mathbf{A} and \mathbf{B} of both structures. To facilitate the comparison we have transformed the structure of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ from the standard setting $C 2 / m$ to the equivalent setting $I 2 / m$. That body-centered space group is a translationengleiche subgroup of the group $I 4 / m$ adopted by $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$. It can be seen that the two structures differ only by a few atomic
positions. The atomic layers drawn with broken lines are equal in both structures. Two essential differences occur in the atomic layers drawn with heavy lines. One difference arises through the Mg 3 position of $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$ which is entirely unoccupied in $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$. This site corresponds to the void position designated V1 in Fig. 3 and Table 4. The other difference concerns the Mg 1 positions of $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$. These positions are in part retained as the Zn 10 positions of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and in part they are substituted by the Zn 14 atoms, whereby one Zn 14 position takes the place of two Mg 1 positions. As a result two vacancies (V2 in Fig. 3 and Table 4) are formed adjacent to the Zn 14 position of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$. This lowers the symmetry from $I 4 / m$ to $I 2 / m$.

We have suggested previously that the voids in the structures of $\mathrm{Ti}_{3} \mathrm{Zn}_{22}$ and TiZn_{16} are filled with nonbonding electrons of the zinc atoms (17). This is now supported by the close relationship of the $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$ type and the $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$
structure. The $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$ structure was also reported for the compounds $\mathrm{Ln}_{5} \mathrm{Mg}_{41}(\mathrm{Ln}=\mathrm{Pr}-\mathrm{Sm})(22,23)$ and this indicates that cerium is essentially trivalent in $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$. This is also evident from the cell volume of $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$, which is larger than that of $\mathrm{Pr}_{5} \mathrm{Mg}_{41}$. Therefore the valence electron count for $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$ is $5 \times 3+41 \times 2=97$ per formula unit (f.u.). For an isotypic compound $\mathrm{Zr}_{5} \mathrm{Zn}_{41}$ a valence electron count of $5 \times 4+41 \times 2=102 /$ f.u. would result. By leaving some of the zinc positions unoccupied the nearly isotypic structure of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ obtains a valence electron count of $5 \times 4+39 \times 2=98 / \mathrm{f} . \mathrm{u}$. and this is close to the electron count of $97 /$ f.u. for $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$. Thus it seems that the band structures of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$ have an optimal electron count/f.u. close to 98 or 97 . By filling the voids in $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ with additional zinc atoms additional $\mathrm{Zn}-\mathrm{Zn}$ interactions would need to occur, which on balance would be more antibonding than bonding. By leaving those voids unoccupied the adjacent zinc atoms may place electrons into nonbonding orbitals pointing towards the voids. This is similar to the space requirement of the well-known lone pairs in compounds of the main group elements. The defect structure of $\mathrm{Ni}_{3} \mathrm{Sn}_{4}$ as compared to the "filled-up" structure of $\mathrm{CoGe}\left(\mathrm{Co}_{4} \mathrm{Ge}_{4}\right)$ has been rationalized similarly (24).

TABLE 4
Location and Coordination of Unoccupied Sites \square (voids V) in the Structures of $\mathbf{Z r}_{5} \mathbf{Z n}_{39}$ and $\mathbf{Z r Z n}_{22}$

$\mathbf{Z r}_{5} \mathbf{Z n}_{39} \square_{7}$				x	y	z
V1		2b		0	1/2	0
V2		4i		0.037	0	0.695
V3		4h		0	0.729	1/2
V4		4 g		0	0.762	0
$\mathrm{ZrZn}_{22} \square_{17}$						
V1		8b		3/8	3/8	3/8
V2		32e		0.283	0.283	0.283
V3		96 g		0.310	0.310	0.121
$\mathrm{Zr}_{5} \mathrm{Zn}_{39} \square_{7}$		ZrZn $2 \square_{17}$				
V1 4Zn1	230 pm	V1 6Zn2 195 pm				
4 Zn 3	226 pm					
		V2 3Zn1 195 pm				
V2 2Zn6	204 pm		3 Zn 2	195 pm		
1 Zn 14	204 pm					
1 Zn 11	233 pm	V3	4 Zn 1	196 pm		
2 Zn 2	253 pm		1Zn4	208 pm		
2Zn5	254 pm		1 Zn 2	209 pm		
1 Zn 7	254 pm					
V3 2Zn5	192 pm					
2Zn2	193 pm					
2 Zn 10	233 pm					
1 Zn 14	233 pm					
V4 2Zn3	203 pm					
2 Zn 1	204 pm					
1 Zr 3	204 pm					

FIG. 6. The crystal structure of $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ in the setting $I 2 / m$ as compared to the tetragonal ($I 4 / m$) structure of $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$. Two corresponding atomic layers of both structures are shown. The origins of the cells are marked by crosses. The Mg 3 position of $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$ is unoccupied in $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$. Of the four Mg 1 pairs, shown in the structure of $\mathrm{Ce}_{5} \mathrm{Mg}_{41}$, two are substituted by a Zn 14 atom in $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$.

ACKNOWLEDGMENTS

We thank Dipl.-Ing. U. Rodewald for the collection of the single-crystal intensity data, Dr. T. Ebel for investigating the magnetic susceptibilities of our samples, Dipl.-Chem. A. Lang for the electrical conductivity measurement, and Mr. K. Wagner for the work at the scanning electron microscope. We appreciate a generous gift of silica tubes by Dr. G. Höfer of the Heraeus Quarzschmelze. We also thank the Alexander von Humboldt Foundation for a stipend to one of us (X.-a. Chen). This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

REFERENCES

1. P. Chiotti and G. R. Kilp, Trans. Metall. Soc. AIME 215, 892 (1959).
2. W. Rossteutscher and K. Schubert, Z. Metallkd. 56, 730 (1965).
3. P. Pietrokowsky, Trans. AIME 200, 219 (1954).
4. S. C. Abrahams, Z. Kristallogr. 112, 427 (1959).
5. S. Samson, Acta Crystallogr. 14, 1229 (1961).
6. R. C. Weast, Ed., "Handbook of Chemistry and Physics," 58th ed. CRC Press, Palm Beach, FL, 1978.
7. G. M. Sheldrick, "SHELXS-86, A Computer Program for Crystal Structure Determination." Univ. Göttingen, Germany, 1986.
8. B. A. Frenz \& Associates, Inc. and Enraf Nonius, 1986.
9. D. T. Cromer and J. B. Mann, Acta Crystallogr. A 24, 321 (1968).
10. D. T. Cromer and D. Liberman, J. Chem. Phys. 53, 1891 (1970).
11. L. M. Gelato and E. Parthé, J. Appl. Crystallogr. 20, 139 (1987).
12. S. Samson, Acta Crystallogr. 11, 851 (1958).
13. S. Samson, Nature 195, 259 (1962).
14. S. Samson, Acta Crystallogr. 17, 491 (1964).
15. S. Samson, Acta Crystallogr. 19, 401 (1965).
16. S. Samson, Acta Crystallogr. 23, 586 (1967).
17. X.-a. Chen, W. Jeitschko, M. E. Danebrock, C. B. H. Evers, and K. Wagner, J. Solid State Chem. 118, 219 (1995).
18. F. C. Frank and J. S. Kasper, Acta Crystallogr. 11, 184 (1958).
19. F. C. Frank and J. S. Kasper, Acta Crystallogr. 12, 483 (1959).
20. C. L. Vold, Acta Crystallogr. 14, 1289 (1961).
21. Q. Johnson and G. S. Smith, Acta Crystallogr. 22, 360 (1967).
22. L. L. Rokhlin, V. V. Kinzhibalo, and N. P. Abrukina, Izv. Akad. Nauk SSSR. Met. 5, 119 (1988).
23. A. Saccone, S. Delfino, G. Borzone, and R. Ferro, J. Less-Common Met. 154, 47 (1989).
24. W. Jeitschko and B. Jaberg, Acta Crystallogr. B 38, 598 (1982).

[^0]: ${ }^{1}$ Permanent address: Institute of Chemistry, Academica Sinica, Beijing 100080, P.R. China.
 ${ }^{2}$ To whom correspondence should be addressed.

[^1]: ${ }^{a}$ All distances shorter than 360 pm are given. All standard deviations are 0.2 pm or less in $\mathrm{Zr}_{5} \mathrm{Zn}_{39}$ and less than 0.1 pm in ZrZn_{22}.

